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Network effects: persistent activity in 
layer 5	
  

Intracellular dynamics: calcium 
interactions support persistent activity 
associated with working memory. 
 

Reaction-diffusion model of CA wave 
(sub-cellular) 
 

We develop empirically-derived models to link 
the different spatial and temporal scale in the 
brain. These include reaction-diffusion models of 
molecular dynamics, hybrid networks with multi-
compartment and event-driven neurons, neural 
field models, and high-level probabilistic models.	
  

Below: Simulated relations of molecular, cellular, and network dynamics in a model 
of prefrontal cortex.	
  

Below: S1 model accurately reproduce physiological properties observed in vivo, 
including firing rates, local field potentials, oscillations, traveling waves, and learning 
of tactile stimulus fields. The model has also been integrated with a neural field model 
of the basal ganglia to model the effects of Parkinson’s disease. 

Experimentally-derived 
connectivity of model of 

M1 microcircuitry 

Below: A hybrid network model (multicompartment and event-driven cells) based on 
detailed cortical microcircuitry of mouse M1 that reproduces experimental firing rates, 
physiological oscillations, and coincidence-detection.	
  

Morphologically realistic 
multicompartment cell model of 

M1 layer 5  Model-generated raster plot reproducing 
physiological properties of M1 

Cross-frequency coupling from LFP of rat 
(prefrontal cortex): experiment (left) vs. 

simulation (right) 

Below: A spiking network model of neocortex that reproduces physiological measures 
at different scales: cell voltages, raster plots, LFPs, and cross-frequency coupling.	
  

Neocortex model connectivity diagram 

We aim to build computational models that map the novel ‘cognitive architecture’ 
described below onto the known anatomy and physiology of brain circuitry. 
 
We propose a Bayesian approach to sensory processing, using a hierarchical, 
distributed architecture of dynamic processing elements. Key features: 
 
1)  bidirectional (top–down and bottom–up) processing enable perceptual 

inference using both sensory data and empirical beliefs about causes from 
higher layers;  

2)  dynamic components are at the core of the model, allowing beliefs about 
temporal context to influence perceptual inference;  

3)  only salient features of the input data are stored, forming a compressed and 
sparse representation;  

4)  re-utilization of same model within and across layers is reminiscent of cortical 
microcircuits, and allows for efficient software/hardware implementation 

•  Additional group to extract machine learning principles from biomimetic 
computational models. 

•  Additional group to record high-resolution data from cortical microcircuits. 
•  Team that requires biomimetic multiscale computational models and algorihtmic 

framework of information processing in the brain. 
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•  Each node consists of two modules: a state–space model, which extracted 
features, and an invariance-learning model, which inferred causes by pooling 
over states.  

•  Inference and parameter learning correspond to minimizing the same energy 
function with respect to either the states or the causes.  

•  The model showed better classification by leveraging temporal and top-down 
contextual information during inference, and was able to disambiguate a 
synthetic video from correlated noise. 

•  We incorporate a key biological feature utilized by the visual system: eye 
movement control (active sensing). We conceptualize visual parsing and 
object identification as a continuous loop where a saccade marks the onset 
of a new sampling episode.  

•  We propose using a multi-level, multi-method approach (single cell, CSD, 
LFP, fMRI), to test the model predictions, by characterizing the spatial and 
temporal dynamics of these interactive processes, and inform and constrain 
computational modeling. 

Block diagram showing the flow of bottom–up and top–down information in the proposed architecture. 

Two-layer hierarchical network illustrating structure of proposed architecture 

Laminar CSD profiles from V1 awake monkey during free-viewing task; red arrows indicate 
activity peaks between saccades to help visualize saccade-related dynamics 


